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Abstract A difunctional imide monomer may be pro-

duced from 4-nitrophthalic anhydride and m-phenylenedi-

amine. The requisite anhydride may be generated by

nitration of phthalimide followed by hydrolysis to the

corresponding acid and dehydration. All intermediate

compounds have been fully characterized using spectro-

scopic and thermal methods.
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Introduction

Over the past century, the consumption of fossil fuels has

powered a transformation of human society and has formed

the basis for a standard of living unmatched in history.

However, the depletion of fossil fuel reserves and the

degradation of the earth’s environment as a consequence of

the large scale use of these materials has generated sub-

stantial interest in alternate forms of energy and methods of

utilization. One of these is the development of proton

exchange (or polymer electrolyte) fuel cells (PEMFCs)

[1–3]. Potentially, PEMFCs offer great advantages over

current technologies, particularly as electrical power

sources for vehicles. These devices are more efficient in the

conversion of chemical energy to electrical energy than

present technologies. They utilize hydrogen as fuel and

produce water as the only by-product. Thus, fuel cells

represent ‘‘clean’’ technology, and all the major automakers

have fuel cell projects underway. However, many problems

remain to be overcome before PEMFCs become standard

power units for automobiles. One of these is the develop-

ment of a durable, efficient proton exchange membrane

[1–3]. Currently, perfluorinated ionomers, such as Nafion,

represent the most commonly used membrane materials.

Although these materials display excellent chemical and

mechanical properties, high cost and relatively low opera-

tional temperatures represent significant limitations. These

limitations have stimulated attempts to develop new mate-

rials for membrane construction. These are often highly

aromatic polymeric structures, poly(arylene ether)s,

poly(arylene ether sulfone)s, poly(ether ether ketone)s and

the like [1]. Most usually, sulfonate groups are introduced

either in a monomer or the finished polymer to provide

proton exchange sites. Polymers containing phosphonic acid

groups offer some advantages over those with sulfonic acid

groups [4]. These materials provide high thermal and oxi-

dative stability, high proton conductivity at elevated tem-

peratures, low hydration conditions and reduced water

uptake which reduces membrane swelling [3]. In this case, a

monomer required for the generation of thermally stable

polymers with high phosphonic acid content has been gen-

erated from phthalimide and fully characterized by spec-

troscopic and thermal methods.

Experimental

General

In general, reactions were carried out in a dry (all glassware

was dried in an oven overnight at 120 �C and allowed to cool
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under a stream of dry nitrogen prior to use) three-necked,

round-bottomed flask fitted with Liebig condenser bearing a

gas-inlet tube, a magnetic stirring bar (or Trubore stirrer), and

a pressure-equalizing dropping funnel (or syringe port).

Chromatography was accomplished using SilaFlash P60

(230–400 mesh silica; Silicycle) in a column of appropriate

size and hexane/ethyl acetate as eluant. Silica-coated Mylar

plates (ThermoFisher Scientific) were used for thin layer

chromatography (TLC). Melting points were determined by

differential scanning calorimetry (DSC) using a Perkin Elmer

Pyris Diamond instrument. All samples were analyzed at a

heating rate of 5 �C min-1 in a constant nitrogen purge of

50 mL min-1. Thermal decomposition temperatures were

obtained using a TA Instruments 2950 Hi-Res TG instrument

interfaced with the Thermal Analyst 2100 control unit. Most

generally, a heating rate of 5 �C min-1 was used. TA Thermal

Advantage software was used for data analysis. Samples

(5–10 mg) were contained in a platinum pan. The sample

compartment was purged with dry nitrogen at 50 mL/min

during analysis. Nuclear magnetic resonance (NMR) spectra

were obtained using a 10–25% solution in deuterochloroform

or dimethyl sulfoxide-d6 and a Varian Mercury 300 MHz

spectrometer. Proton and carbon chemical shifts are reported

in parts-per-million (d) with respect to tetramethylsilane

(TMS) as internal reference (d = 0.00). Phosphorus chemical

shifts are in d with respect to triphenyl phosphate as internal

reference (d = -18.0). Infrared (IR) spectra were obtained

using thin films between sodium chloride plates or solid

solutions (1%) in anhydrous potassium bromide (as discs) and

a Nicolet MAGNA-IR 560 spectrometer. Absorptions were

recorded in wave numbers (cm-1), and absorption intensities

were classified in the usual fashion as very weak (vw), weak

(w), and medium (m), strong (s), and very strong (vs) relative

to the strongest band in the spectrum. Mass spectra were

obtained using a Hewlett-Packard 5890A gas chromatograph/

mass spectrometer (MSD) with an ionizing potential of 70

electron volts and temperature programmed elution into the

spectrometer inlet (90–200 �C).

Materials

Common solvents and reagents were obtained from

ThermoFischer Scientific or the Aldrich Chemical Com-

pany. Phthalimide, acetic anhydride, m-phenylenediamine,

and 1,4-diazabicyclo[2.2.2]octane (DABCO) were

obtained from the Aldrich Chemical Company.

Synthesis

4-Nitrophthalimide

To a stirred, cold (10 �C) solution of 250 mL of fuming

aqueous nitric acid in 1600 mL of concentrated aqueous

sulfuric acid was added, portionwise, 210.1 g (1.43 mol) of

phthalimide at a rate such that the temperature of the

mixture was maintained between 10 and 15 �C [5]. The

mixture was allowed to warm to room temperature and to

stir overnight. The yellow solution was slowly poured, with

stirring, onto 2 kg of ice. The crude product which pre-

cipitated was collected by filtration at reduced pressure.

The crude product was suspended in 2 L of ice-water, and

the mixture was stirred vigorously for several minutes. The

solid was collected by filtration at reduced pressure.

The wash, collection procedure was repeated four times.

The crude product was recrystallized from ethanol to afford

190.30 g (69.3% yield) of 4-nitrophthalimide as yellow

crystals, mp 203 �C (DSC). ([6], 198 �C), decomposition

onset 203 �C (TG): FTIR (ATR, cm-1) 3329 (m), N–H,

3104 (w), 3058 (w), Csp2–H, 1734 (m), 1699 (vs), C=O,

1622 (w), aromatic nucleus, 1545 (s), 1348 (s), –NO2; 1H-

NMR (d, CDCl3) 8.03 (A portion of an ABX pattern,

JAB = 8.1 Hz, JAX = 0.6 Hz, 1H, aromatic proton), 8.38

(X pattern of an ABX pattern JBX = 2.1 Hz, JAX =

0.6 Hz, 1H, aromatic proton), 8.57 (B pattern of an ABX

pattern JAB = 8.1 Hz, JBX = 2.1 Hz, 1H, aromatic pro-

ton), 11.8 (broad s, 1H, imide proton); 13C-NMR (d,

CDCl3) 117.8 (aromatic carbon atom ortho to carbonyl),

124.5 (aromatic carbon atom ortho to a nitro group), 129.5

(aromatic carbon atom ortho to both a nitro and carbonyl

group), 134.0 (aromatic carbon attached to a carboxyl

group), 137.3 (aromatic carbon atom attached to a carbonyl

group meta to a nitro group), 151.4 (aromatic carbon atom

attached to a nitro group), 167.3 (carbonyl carbon atom

meta to a nitro group), 167.6 (carbonyl atom para to a nitro

group); MS (m/z, % of base) 192 (M?, 100), 103 (C7H3O?,

82), 75 (C6H3
?, 69).

4-Nitrophthalic acid

A mixture of 80.0 g (0.42 mol) of 4-nitrophthalimide in a

solution of 26.8 g (0.66 mol) of sodium hydroxide in

240 mL of water was heated at solvent reflux for 10 min

[6]. The solution was made barely acidic to litmus by

addition of concentrated nitric acid solution. After the

neutralization point was reached, an additional 70 ml of the

nitric acid solution was added. The resulting solution was

brought to solvent reflux for 3 min, allowed to cool to room

temperature, and extracted with two 300-mL portions of

diethyl ether. The ether layers were combined and dried

over anhydrous sodium sulfate. The ether solution was

poured into a pre-weighed crystallizing dish, and the sol-

vent was allowed to slowly evaporate to provide the crude

product. Recrystallization of the crude product from ethyl

acetate/hexane (1:3) afforded 83.67 g (89.3% yield) of

4-nitrophthalic acid as yellow crystals, mp 172 �C (DSC),

([6], 163–164 �C), onset of decomposition 180 �C (TG):
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FTIR (ATR, cm-1) 3091 (v. broad, m) carboxyl group,

1732 (s), 1709 (vs) (carbonyl group), 1612 (m), aromatic

nucleus, 1534 (s), 1350 (s) (nitro group); 1H-NMR (d,

DMSO-d6) 7.88 (A portion of an ABX pattern,

JAB = 9.0 Hz, 1H), 8.38 (B portion of an ABX pattern,

JAB = 9.0 Hz, JBX = 2.3 Hz), 8.43 (X portion of an ABX

pattern, JBX = 2.3 Hz); 13C-NMR (d, DMSO-d6) 123.7,

126.2, 129.8, 133.0, 139.4, 148.2 (aromatic carbon atoms),

166.4, 167.8 (carbonyl carbon atoms); MS (m/z, % base)

193 ([M-18]?, 4), 149 (C7H3NO3
?, 100), 103 (C7H3O?,

51), 75 (C6H3
?, 52).

4-Nitrophthalic anhydride

A solution of 40.3 g (0.19 mol) of 4-nitrophthalic acid and

50 mL (54.0 g, 0.53 mol) of acetic anhydride in 100 mL of

anhydrous diethyl ether was stirred overnight at room

temperature. Solvent and acetic acid were removed by

rotary evaporation at reduced pressure to afford the crude

product as a residual solid. The crude material was sus-

pended and stirred in cold diethyl ether and then collected

by filtration at reduced pressure. This process was repeated.

The collected material was allowed to dry to provide

32.17 g (88.0% yield) of 4-nitrophthalic anhydride, mp

121 �C (DSC) ([7], 120–121 �C), decomposition onset

190 �C (TG): FTIR (ATR, cm-1) 3013 (w), Csp2–H, 1782

(vs), C=O, 1613 (w), aromatic nucleus, 1545 (s), 1347 (s),

nitro group; 1H-NMR (d, DMSO-d6) 7.86 (A portion of an

ABX pattern, JAB = 8.2 Hz, 1H), 8.38 (B portion of an

ABX pattern, JAB = 8.2 Hz, JBX = 2.3 Hz), 8.43 (X por-

tion of an ABX pattern, JBX = 2.3 Hz, 1H); 13C-NMR (d,

DMSO-d6) 123.8, 126.2, 129.9, 133.0, 139.4, (aromatic

carbon atoms), 148.2 (aromatic carbon atom attached to a

nitro group), 166.4, 167.8 (carbonyl carbon atoms); MS

(m/z, % base) 193 (M?, 5.5), 149 (C7H3NO3
?, 100), 103

(C7H3O?, 59), 75 (C6H3
?, 76).

1,3-Di(4-nitrophthalimido)benzene

A mixture of phthalic anhydride (1.0 g, 5.18 mmol),

m-phenylenediamine (0.28 g, 2.59 mmol) and DABCO

(0.06 g, 0.50 mmol) was crushed in a mortar and pestle for

2 min [8]. The crushed solid was suspended in water

(5.0 mL). The solid was collected by filtration at reduced

pressure and recrystallized from ethanol to provide 0.52 g

(23.4% yield) of 1,3-(4-nitrophthalimido)benzene as yellow

crystals, mp 198 �C (DSC), decomposition onset 184 �C

(TG): FTIR (ATR, cm-1) 3078 (w), Csp2–H, 1708 (m), 1674

(s), carbonyl, 1613 (s), aromatic nucleus, 1528 (s), 1347 (s),

nitro group; 1H-NMR (d, DMSO-d6) 6.15 (d, J = 2.0 Hz,

1H), 6.18 (overlapping s and d, 2H), 6.87 (t, J = 7.8 Hz,

1H), 8.16 (A portion of an ABX pattern, JAB = 8.5 Hz, 1H),

8.35 (B portion of an ABX pattern, JAB = 8.5 Hz,

JBX = 2.6 Hz, 1H), 8.70 (X portion of an ABX pattern,
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JBX = 2.6 Hz, 1H); 13C-NMR (d, DMSO-d6) 104.3, 107.8,

125.3, 125.7, 129.8, 132.5, 134.9, 139.9, 144.7, 148.2, 166.1

(C=O), 166.9 (C=O).

Results and discussion

To construct a polymer that might serve as a useful

membrane material for proton exchange fuel cells, a

difunctional imido monomer is required. This compound

may be prepared from phthalimide as outlined below

(Scheme 1). Nitration of phthalimide provided the 4-nitro

derivative as a pale yellow solid mp 203 �C (DSC)

(Fig. 1).

It undergoes smooth single-step decomposition with an

onset temperature for degradation of 203 �C (Fig. 2).

The infrared spectrum of this compound (Fig. 3) con-

tains bands for N–H absorption (3329 cm-1), aromatic

C–H absorbtion (3104, 3058 cm-1), absorption for an

aromatic nucleus (1622 cm-1), and absorption for a nitro

group (1545, 1348 cm-1).

The proton NMR spectrum is displayed in Fig. 4. It

contains an ABX pattern, d 8.03–8.58, for the aromatic

protons and a broad singlet at d 11.8 for the imide proton.

The carbon-13 NMR spectrum (Fig. 5) of this compound

contains absorbtion for aromatic carbon atoms at d 117.8,

124.5, 129.5, 134.0, 137.3, and 151.4 and absorbtion for

the carbon atoms of the carbonyl groups at d 167.3 and

167.6.

The mass spectrum of this compound (Fig. 6) contains a

base peak at m/z 192 (molecular ion) and prominent peaks
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at m/z 103 and 75. The fragmentation pattern is outlined in

Scheme 2.

Base-catalyzed hydrolysis of 4-nitrophthalimide gener-

ates the corresponding dicarboxylic acid. This material was

obtained as a yellow solid, mp 172 �C (DSC) (Fig. 7).

This material undergoes smooth thermal decomposition

in a single step with an onset for degradation at 180 �C

(Fig. 8).

The infrared spectrum of this material (Fig. 9) contains

broad carboxyl absorption at 3500–2500 cm-1, carbonyl

absorption at 1732 and 1709 cm-1, absorption for an aro-

matic nucleus at 1612 cm-1, and absorption for a nitro

group at 1534 and 1350 cm-1.

The proton NMR spectrum (Fig. 10) of this compound

consists of an ABX pattern, d 7.88–8.43, and a singlet for

the carboxyl proton at d 11.7.
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The carbon-13 NMR spectrum (Fig. 11) contains

absorptions for aromatic carbon atoms at d 123.7, 126.2,

129.8, 133.0, 139.4, and 148.2 as well as carbonyl carbon

atom absorptions at d 166.4 and 167.8

The mass spectrum of this compound (Fig. 12) contains

a base peak at m/z 149 and major fragment peaks at m/z

193 ([M-18]?), 103, and 75. The fragmentation pattern is

presented in Scheme 3.

The dicarboxylic acid may be converted to the corre-

sponding anhydride by dehydration with acetic anhydride.

4-Nitrophthalic anhydride was obtained as pale yellow

crystals, mp 121 �C (DSC) (Fig. 13).

The material undergoes smooth decomposition with an

onset for degradation at 190 �C (Fig. 14).

The infrared spectrum of this compound contains aro-

matic C–H absorption at 3013 cm-1, carbonyl absorption

at 1782 cm-1, absorption for an aromatic nucleus at

1613 cm-1, and absorptions for a nitro group at 1545 and

1347 cm-1. The spectrum is displayed in Fig. 15.

The corresponding proton NMR spectrum shown in

Fig. 16 consists of an ABX pattern, d 7.86–8.43.

The carbon-13 NMR spectrum (Fig. 17) contains

absorptions for aromatic carbon atoms at d 123.8, 126.2,

129.9, 133.0, 139.4, and 148.2 and absorbtion for carbonyl

carbon atoms at d 166.4 and 167.8. The mass spectrum of

this compound (Fig. 18) contains a molecular ion peak at

m/z 193, a base peak at m/z 149 and major fragmentation

peaks at 103 and 75. The fragmentation pattern is outlined

in Scheme 4.

Condensation of 4-nitrophthalic anhydride with m-

phenylenediamine in the presence of the nucleophilic

catalyst, DABCO, afforded 1,3-di(4-nitrophthalimido)ben-

zene as yellow crystals, mp 198 �C (DSC).

The infrared spectrum of this compound (Fig. 19) contains

aromatic C–H absorptions at 3078 cm-1, carbonyl absorptions

at 1708 and 1674 cm-1, aromatic absorption at 1607 cm-1,

and nitro group absorbtion at 1528 and 1347 cm-1.

The corresponding proton NMR spectrum (Fig. 20)

contains absorptions for protons of the central aromatic
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unit at d 6.15, 6.18, and 6.87 as well as an ABX pattern

(d 8.16–8.70) for the protons of the nitrophthalimido

group.

The carbon-13 NMR spectrum (Fig. 21) contains

absorptions for the central aromatic unit at d 104.3, 107.8,

129.8, and 148.2 and absorptions for the carbon atoms of
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nitrophthalimido groups at d 125.3, 125.7, 132.5, 134.9,

139.9, and 144.7. Absorptions for the carbonyl carbon

atoms appear at d 166.1 and 166.9.

1,3-Di(4-nitrophyhalimido)benzene undergoes thermal

decomposition in two steps (Fig. 22). The extrapolated

onset temperatures for the first step is 184 �C and for the

second 312 �C. The first mass loss probably reflects frag-

mentation of one of the imido units.

Conclusions

A difunctional monomer, 1,3-(4-nitrophthalimido)benzene,

has been prepared from phthalimide as an inexpensive
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starting material. This material is a crystalline solid, mp

198 �C. It undergoes thermal decomposition in two stages,

probably by fragmentation of the imido groups. Precursors

to this monomer have been fully characterized using ther-

mal and spectroscopic methods. The monomer should be

reactive toward a variety of arenediol monomers bearing

phosphonic acid functionality to generate durable poly-

meric materials suitable for the generation of useful fuel

cell membranes.
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